If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+80x+200=0
a = -16; b = 80; c = +200;
Δ = b2-4ac
Δ = 802-4·(-16)·200
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80\sqrt{3}}{2*-16}=\frac{-80-80\sqrt{3}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80\sqrt{3}}{2*-16}=\frac{-80+80\sqrt{3}}{-32} $
| 38x+5=81 | | 2(x+1)=5(1-4x) | | 13y+9=9 | | x-24+2x+42=180 | | 5u-4=21 | | 5(x-3.8)=22 | | y+5y+5y=8;y=-2−2,00,44 | | 2(x+2)=-x–17–4x | | -12=-6-|6-2x| | | 2(9n-1+7(n+6)=-60 | | −64(x−70)=x+(−14) | | -28=-7+v/3 | | -3(x-2)+10=2(5-x)+20 | | 12(16-x)=-12(x+7) | | x2+x+1=(x+1)(x-1) | | 4y-8=9y-12 | | 2|2x+5|-5=9 | | 22+-49=x | | 34x-7=15+12 | | -9x^2+36x-41=0 | | 4x6=12xN | | 2x+5=9(x-1/6) | | -7(4x-3)=-28x+21 | | 3(2x+3)=6x+12 | | 6x+3/4-5x=19/28 | | 5 = q3+ 2 | | 25x=20x+10 | | 8x+4x-60=100-8x | | (√1-3x)/x=0 | | 14y+3=17 | | y=240(0.75)^3 | | 3=1/8+z |